Nanoscale

PAPER

Check for updates

Cite this: DOI: 10.1039/c7nr03187d

Received 5th May 2017, Accepted 27th June 2017 DOI: 10.1039/c7nr03187d

rsc li/nanoscale

1. Introduction

Nowadays, lithium ion batteries (LIBs) and supercapacitors which can realize the conversion of electric energy and chemical energy are predominant power supplies with a wide range of applications. The energy storage mechanism in LIBs is a typical chemical process accompanied by Li⁺ ion insertion/ extraction into/from electrode materials, while in supercapacitors it is mainly based on the physical adsorption of charges coupling with pseudocapacitive reactions on the surfaces of electrode materials. The different energy storage mechanisms impart high energy densities to LIBs,¹ while high power outputs to supercapacitors.² For both devices electrode materials are considered as the key components determining the overall performances. Therefore, developing high-perform-

One-pot mass preparation of MoS₂/C aerogels for high-performance supercapacitors and lithium-ion batteries†

Yan Zhang, 🔟 ‡^{a,b} Ting He,‡^c Guanglei Liu,^a Lianhai Zu^a and Jinhu Yang*^{a,b}

In this paper, we report the successful design and synthesis of a hierarchically porous MoS_2/C composite aerogel by simple one-pot mass preparation. The synthesis involves the *in situ* formation of MoS_2 nanosheets on agarose molecular chains, the gelation of MoS_2 -deposited agarose monomers to generate a composite hydrogel, and *in situ* transformation of the composite hydrogel into a MoS_2/C composite aerogel through carbonization. This composite aerogel can be used as a high-performance electrode material for supercapacitors and lithium-ion batteries. When tested as a supercapacitor electrode, it achieves a high specific capacitance of 712.6 F g⁻¹ at 1 A g⁻¹ and 97.3% capacity retention after 13 000 cycles at 6 A g⁻¹. In addition, as a lithium-ion battery electrode, it exhibits a superior rate capability (653.2 mA h g⁻¹ at 0.1 A g⁻¹ and 334.5 mA h g⁻¹ at 5.0 A g⁻¹) and an ultrahigh capacity retention of nearly 100% after 1000 cycles at 1 A g⁻¹. These performances may be ascribed to the unique structure of the MoS_2/C composite aerogel, such as hierarchical pores, (002) plane-expanded MoS_2 and interconnected carbon networks embedded uniformly with MoS_2 nanosheets. This work may provide a general and simple approach for mass preparation of composite aerogel materials and pave the way for promising materials applied in both supercapacitors and lithium-ion batteries.

> ance electrode materials has been a significant strategy to address the ever-increase demand for practical energy applications. Nevertheless, subjected to the different working mechanisms in two devices, electrode materials were often exclusively designed and applied to either LIBs or supercapacitors, which limit the practical application scope of the developed electrode materials. It is highly desired to develop suitable materials as high-performance electrodes for both LIBs and supercapacitors.

> Molybdenum disulfide (MoS_2) , as a typical two-dimensional layered metal dichalcogenide with interconnected sulfurmolybdenum-sulfur bonds,³ has drawn great attention due to its unique structure and attractive properties.⁴⁻⁶ Similar to graphite, MoS₂ has a layered planar structure and the interlayered space conducive to the lithium intercalation.^{7,8} In addition, the central Mo atoms have the valence ranging from +2 to $+6^{9}$ showing great potential for electrochemical pseudocapacitance. Therefore, MoS₂ is considered as an ideal material for LIBs and supercapacitors. However, as a semiconducting material, MoS₂ shows poor electrical conductivity which is a drawback for LIBs and supercapacitors. To improve the conductivity of molybdenum disulfide, a variety of strategies have been developed to synthesize carbonaceous MoS2 composite materials such as graphene– MoS_2^{10-12} and other carbon– MoS_2 composites¹³⁻¹⁹ for LIBs and supercapacitors. However, few of

View Article Online

^aSchool of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China. E-mail: yangjinhu@tongji.edu.cn

^bResearch Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai 200120, P. R. China

^cSchool of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, P. R. China

[†]Electronic supplementary information (ESI) available. See DOI: 10.1039/ c7nr03187d

[‡]These authors contributed equally to this work.

 MoS_2/C composites reported so far are suitable for both lithium-ion batteries and supercapacitors. Moreover, the MoS_2/C composites are produced on a gram scale, which is difficult to scale up.

Herein, we propose a simple method for the mass preparation of MoS_2 /carbon composite aerogels which can be employed as excellent electrodes for both lithium-ion batteries and supercapacitors. The prepared MoS_2/C aerogel combines the advantages of 3D interconnected frameworks, hierarchical pores, interlayer-expanded MoS_2 which are beneficial for electron transport, fast electrolyte/Li ion diffusion and efficient ion intercalation into MoS_2 . When used as an electrode material for supercapacitors, the MoS_2/C aerogel exhibits high specific capacitance and electrochemical stability. In addition, the MoS_2/C aerogel also shows excellent lithium storage performance as an anode material, such as high rate performance and long-term cycle stability.

2. Experimental section

Chemicals

Sodium molybdate dihydrate $(Na_2MoO_4 \cdot 2H_2O)$, thioacetamide (C_2H_5NS) and agarose $(C_{12}H_{18}O_9)$ were purchased from Aladdin Reagent Co. Ltd and used without further purification.

Synthesis of MoS₂/agarose aerogel

In a typical experiment, a mixed solution was prepared by dissolving 0.3 g sodium molybdate dihydrate and 0.6 g thioacetamide in 20 mL deionized water. Then, 1.5 g agarose was added. The reaction solution was kept at 90 °C for 5 days with strong stirring. A dark brown hydrogel was formed when the reaction system was cooled down to 4 °C in a freezer. Subsequently, the gel was rinsed with deionized water and dialyzed for 3 days.

Synthesis of MoS₂/C composite aerogel

The as-synthesized hydrogel was treated through the freezedrying process and then thermally decomposed in a tube furnace at 550 °C for 4 h and then 700 °C for 2 h under an Ar atmosphere with a heating rate of 2 °C min⁻¹.

Characterization

The general morphologies were characterized by using a fieldemission scanning electron microscope (FE-SEM, Hitachi S4800, 3 kV) equipped with an X-ray energy dispersive spectroscopy (EDS) analysis system and a high-resolution transmission electron microscope (HR-TEM, JEM 2011, 200 kV). The crystal structure was characterized by X-ray diffraction (XRD) using a D/max2550VB3+/PC X-ray diffractometer with a Cu K α radiation source ($\lambda = 0.15418$ nm). The Raman spectrum was recorded by using a spectrophotometer (inVia, Renishaw, Germany) with a 514 nm laser. The specific surface area was analyzed on a Quantachrome Nova 2200e and calculated *via* the Brunauer–Emmett–Teller (BET) model, and the pore size distribution was estimated by the Barret–Joyner–Halenda (BJH) method. The Mo element was detected by inductively coupled plasma atomic emission spectroscopy (ICP-AES, PerkinElemer Optima 8000).

Evaluation of the performance of supercapacitors

Measurements were done using a standard three-electrode cell, including an Ag/AgCl electrode as a reference electrode, a platinum wire as a counter electrode and a working electrode. The working electrode was a mixture of the as-synthesized sample, active carbon and polytetrafluoroethylene (PTFE) in ethanol with a weight ratio of 8:1:1. The slurry was pasted onto nickel foam after being treated by ultrasound for 1 h and dried in a vacuum oven at 110 °C for 24 h. The electrolyte was an aqueous solution containing 6 M KOH. Electrochemical measurements were conducted using a CHI660E electrochemical analyzer (CH Instruments, Inc., Shanghai).

Evaluation of the performance of lithium-ion batteries

The working electrode slurry was a mixture of the assynthesized sample, active carbon and polyvinylidene difluoride (PVDF) in *N*-methyl pyrrolidinone (NMP) with a weight ratio of 8:1:1. The slurry was pasted onto a copper foil after being stirred overnight and dried in a vacuum oven at 80 °C for 24 h. Cells were assembled in an Ar-filed glove box. Cyclic voltammetry (CV) was performed using a CHI660E electrochemical analyzer (CH Instruments, Inc., Shanghai). Galvanostatic charge– discharge experiments were conducted using a LAND CT2001A battery testing system (Wuhan, China) at 25 °C.

3. Results and discussion

Fig. 1 shows a schematic illustration of the formation of the MoS_2/C aerogel. Firstly, $Na_2MoO_4 \cdot 2H_2O$ gives Na^+ and MoO_4^{2-} ions in water and C_2H_5NS hydrolyzes (reaction (1)). As the temperature rises, H_2S released from thioacetamide reacts with MOO_4^{2-} ions slowly to produce MoS_2 according to reaction (2).²⁰

$$C_2H_5NS + H_2O \rightarrow CH_3CONH_2 + H_2S$$
 (1)

$$MoO_4{}^{2-} + 3H_2S \rightarrow MoS_2 + 3H_2 + SO_4{}^{2-}$$
 (2)

Agarose monomers dissolve in water acting as surfactants. The agarose monomer with four hydroxyls can absorb the reactant of $MoO_4^{2^-}$ ions in solution and allow *in situ* nucleation and formation of MoS_2 nanosheets on agarose molecular chains, which provide steric protection of MoS_2 nanosheets from agglomeration. When the reaction system cools down, a network structure composed of agarose monomers, *i.e.* an agarose hydrogel is formed due to the strong interaction of hydrogen bonds, and MoS_2 nanosheets are locked separately within the space of the network structure. Introducing the inorganic nanoparticle component into the structure is able to strengthen the toughness of the whole gel.²¹ In the following carbonization step, the networks of agarose chains deposited

Fig. 1 Schematic illustration of the synthetic route to the formation of the MoS_2/C composite aerogel.

with MoS_2 in situ transform to the MoS_2 nanosheet/carbon skeleton aerogel. In this step, the carbon skeleton prevents MoS_2 nanosheets from agglomeration, and in turn MoS_2 nanosheets exert the same effect on agarose chains, conducive to forming a variety of pores in different sizes in the composite aerogel during carbonization.

Fig. 2a shows the optical photograph of the obtained MOS_2/C composite aerogel. It is clear that the diameter and height of the cylinder-like aerogel are approximately 3 cm and 1.7 cm, respectively. The density of the aerogel was calculated to be approximately 0.04 g cm⁻³, which makes the aerogel stand freely on a brush. In addition, the production of this aerogel can be easy to enlarge, depending on the preparation of the precursor. Fig. S1† shows the precursor formed on a larger scale with a size of 15.8 cm (diameter) and 4.7 cm (height). Fig. 2b and c display the SEM images of the obtained MOS_2/C composite aerogel at different magnifications. The hierarchically porous structure is shown and pore sizes range from less than one micrometer to several hundred micrometers. The

pores of different sizes in the carbon skeleton are formed due to the sublimation of water during the freeze-drying process,²² the removal of the oxygen-containing group in the agarose monomers during thermal processing and the steric effect of MoS₂ nanosheets dispersed on the composite. It is found from the BET results (Fig. S2[†]) that the surface area of the obtained MoS_2/C composite aerogel is 212.0 m² g⁻¹ and the distribution of the pore diameter centers at approximately 3.8 nm. Also, the pores with different sizes are shown in Fig. S3,† which further confirms that the MoS₂/C composite aerogel is a hierarchically porous structure comprising macro-, meso- and micropores. The element maps indicate the homogeneous distribution of the three elements C, Mo and S (Fig. 2d), in which the C element accounts for a greater proportion as the color standing for the C element is more intensive than others. Specifically, the atomic ratios of three elements in the composite aerogel are 86.3% (C), 4.6% (Mo) and 9.1% (S), respectively, indicating a mass percentage of 41.3% for MoS₂ in the composite aerogel. The mapping analysis matches the energy dispersive

Fig. 2 Optical photographs (a), SEM images (b and c), element maps (d) and TEM images (e, f) of the MoS₂/C composite aerogel.

X-ray spectrometry (EDS) results (Fig. S4[†]), which furthermore proves that the MoS₂ composite aerogel is composed of the three elements. Fig. 2e and f show the typical TEM images of the MoS_2/C composite aerogel at a higher magnification. It is found that MoS₂ nanosheets are embedded uniformly in the carbon skeleton, showing a distorted morphology (Fig. 2e). The crystal lattices of MoS₂ nanosheets inside the composite aerogel are difficult to be clearly observed due to the interference of thick carbon skeletons. To have a clear observation, an area on the surface of the composite aerogel was selected for study, as shown in Fig. 2f. The TEM image in Fig. 2f displays the expanded (002) planes of MoS₂ (JCPDS card no.37-1492), with a d-spacing of approximately 7.20 Å, which may be caused by the insertion of Na⁺ ions. It is reported that Na⁺ ions are able to intercalate into MoS₂ layers, increasing the distance of the interplanar spacing of the (002) planes.²³ For example, Hu et al. found that the intercalation of Na⁺ ions into the MoS₂ layers during the hydrothermal process led to the peak of the (002) plane shifting to a low angle.²⁴ Moreover, reported by Alla Zak et al., Na atoms could also intercalate into MoS₂ layers though a vapor transport technique, leading to the d-spacing increase of the (002) plane, which was proved by XPS and EDS analyses.25

Furthermore, the composition of the MoS₂/C composite aerogel is confirmed by XRD and Raman analyses. Fig. 3a shows the XRD pattern of the aerogel and it is found that there are three diffraction peaks at $2\theta = 32.7$, 39.5 and 58.3°, which can be assigned to the (100), (103), (110) planes of the hexagonal-phase MoS₂ (JCPDS card no.37-1492). It is noted that the peak position (13.2°) corresponding to the (002) plane shifts to the left compared with that (14.4°) of the normal MoS₂, indicating that the distance between the (002) planes increases, which is in good agreement with the interplanar spacing measured in the TEM image (Fig. 2f). Except for the (002) peak, other peaks have no apparent shifts because their corresponding interplanar spacings are too small to be intercalated by Na⁺ ions. Fig. 3b displays the Raman spectrum of the $MoS_2/$ C composite aerogel. It is found that the Raman spectrum from 350 cm^{-1} to 420 cm^{-1} exhibits two vibration peaks at 383 cm⁻¹ and 405 cm⁻¹ which respectively belong to the E_{2g}^1 and A_{1g} vibration modes of MoS₂.^{26,27} There are additional two

bands in the range of 1300–1700 cm⁻¹ matching the D band and G band of the carbon skeleton. The D band at approximately 1400 cm⁻¹ associates with the defect and lattice distortions in the carbon skeleton and the G band located at about 1580 cm⁻¹ corresponds to the relative motion of sp² carbon atoms.²⁸

Fig. 4 displays the electrochemical performance of the MoS_2/C composite aerogel when used as an electrode material in supercapacitors. Fig. 4a shows the CV curves at different scan rates, ranging from 5 to 800 mV s⁻¹. All the CV curves display a pair of redox peaks, proving the presence of a pseudo-capacitive behavior and reversible Faradaic reactions. As the scan rate increases, the current response increases accordingly and the peak position changes, but the shape of CV curves retains, which indicates a good electrochemical stability and rate performance of the MoS₂/C aerogel. The galvanostatic charging-discharging curves of the MoS₂/C composite aerogel are measured at different current densities, ranging from 1 A g⁻¹ to 20 A g⁻¹, as displayed in Fig. 4b. The specific capacitances at the corresponding current densities are plotted in Fig. 4c. The specific capacitance is calculated based on eqn (1):²⁹

$$C = \frac{2i_{\rm m} \int V \mathrm{d}t}{\frac{V^2 |_{V_i}^{V_f}}{V_i}} \tag{1}$$

where C (F g⁻¹) is the specific capacitance, and $i_m = I/m$ $(A g^{-1})$ is the current density, where I represents the current and *m* represents the active mass of the electrode. $\int V dt$ represents the integral current area and V represents the potential with the initial and final values of V_i and V_f , respectively. Among various tested conditions, the capacitances are calculated with eqn (1) using the integral current areas of the discharge curves in Fig. 4b, as shown in Fig. 4c. The MoS₂/C aerogel electrode exhibits the specific capacitances of 712.6, 669.6, 640.1, 615.2, 592.8, 578.2, 543.3, 513.6, 464.3, 447.5 and 415.1 F g⁻¹ at current densities of 1, 2, 3, 4, 5, 6, 8, 10, 14, 16 and 20 A g^{-1} , respectively. The specific capacitance achieves a maximum of 712.6 F g^{-1} at a low current density of 1 A g^{-1} , which is comparable to or higher than previously reported supercapacitors based on MoS₂ materials. The high capacitance may be attributed to the pseudocapacitance caused by the central Mo atoms

Fig. 3 XRD pattern (a), and Raman spectrum (b) of the MoS₂/C composite aerogel.

Paper

with the valence ranging from +2 to +6 in the discharging/ charging processes. Even if measured at a high current density of 20 A g^{-1} , the specific capacitance still maintains 415.1 F g^{-1} , which is 58.2% of the maximum at 1 A g^{-1} . The good rate performance may be attributed to the hierarchically porous structure of the composite aerogel, which may provide shorter pathways for fast and efficient ion transport. Fig. 4d shows the long-term cycle stability of the aerogel at 6 A g^{-1} , which is another critical factor for practical applications especially at a relatively high current density. The specific capacitance is 578.2 F g^{-1} at the initial cycle and can still maintain 562.6 $F g^{-1}$ after 13 000 cycles, giving a high capacitance retention of ~97.3%. This excellent cyclability may be owing to the fact that the carbon skeleton inhibits the aggregation of MoS₂ layers which enhances the stability of the composite. Table S1[†] summarizes some of the results that have been reported about MoS₂ as an electrode material used in supercapacitors.³⁰⁻³⁴ Obviously, the performance of the MoS₂/C composite aerogel is among the best level for MoS₂ material-based supercapacitors.

Fig. 5 displays the electrochemical lithium storage performance of the MoS₂/C composite aerogel when used as an anode in LIBs. Fig. 5a shows the initial three CV curves in the potential range of 0.05–3.0 V at a scan rate of 5 mV s⁻¹. In the first cathodic sweep, there are two peaks at approximately 0.7 V and 0.4 V in the first discharge. The 0.7 V peak is attributed to the formation of Li_xMoS_2 (reaction (3)) that results in a phase transition from 2H to 1T,^{4,11} which indicates the intercalation of Li⁺ into MoS₂ layers.³⁵ The peak at 0.4 V corresponds to the conversion reaction of Li_xMoS₂ to Li₂S and Mo

(reaction (4)),⁴ followed by the formation of a SEI layer irreversibly.36

$$MoS_2 + xLi^+ + xe^- \rightarrow Li_xMoS_2$$
 (3)

$$Li_xMoS_2 + (4 - x) Li^+ + (4 - x)e^- \rightarrow 2Li_2S + Mo$$
 (4)

6 A/g

8 A/g 10 A/g

14 A/g

16 A/a

250

300

200

In the first anodic scan, a weak peak at 1.4 V and a main peak at 2.3 V are found, which belong to the conversion reactions of Mo to MoS_2 (reaction (5)) and Li_2S to S (reaction (6)) respectively.15,37

1

$$Mo + 2Li_2S \rightarrow MoS_2 + 4Li^+ + 4e^-$$
(5)

$$\text{Li}_2 S \rightarrow 2 \text{Li}^+ + S + 2 e^-$$
 (6)

In subsequent reduction cycles, a peak at 1.0 V and a new peak at 1.7 V are observed, which are associated with the formation of $Li_x MoS_2$ (reaction (3)) and Li_2S (reaction (7)), respectively.7,36,38

$$S + 2Li^+ + 2e^- \rightarrow Li_2S$$
 (7)

In subsequent oxidation cycles, there are two peaks at approximately 2.3 V and 1.6 V, which belong to the dissociation oxidation of Li₂S (reaction (6)) and delithiation of Li_xMoS_2 (reaction (8)) produced in the cathodic process, respectively.38,39

$$\text{Li}_x \text{MoS}_2 \rightarrow x \text{Li}^+ + \text{MoS}_2 + x \text{e}^-$$
 (8)

Fig. 5b displays the typical capacity-voltage curves of the MoS₂/C composite aerogel for charging and discharging at a current density of 0.1 A g^{-1} in the potential range of 0.05–3.0

Fig. 5 Initial three CV curves at a scan rate of 5 mV s⁻¹ (a), charging–discharging curves of the initial three cycles (b), capacities at different current densities (c) and cycling performance at the current density of 1A g^{-1} (d) of the MoS₂/C composite aerogel used as an electrode material in lithium-ion batteries.

V. In the first discharge, the plateaus appear at approximately 0.7 V and 0.4 V, which correspond to the formation of Li_xMoS_2 and the subsequent conversion of Li_xMoS₂ to Li₂S and Mo, respectively.4 The peak at 1.7 V appearing in the next two discharges indicates the formation of Li₂S.³⁸ During the first cycle, the MoS₂/C aerogel electrode shows a discharge capacity of 1054.2 mA h g^{-1} and a charge capacity of 663.7 mA h g^{-1} . The irreversible capacity loss is likely attributed to the decomposition of the electrolyte and the formation of the SEI layer.⁴⁰ Fig. 5c shows the capacities of the MoS₂/C electrode at different current densities, ranging from 0.1 A g^{-1} to 5 A g^{-1} . The capacities are 653.2, 630.2, 552.7, 512.9, 439.7 and 334.5 mA h g^{-1} at current densities of 0.1, 0.2, 0.5, 1.0, 2.0 and 5.0 A g^{-1} , respectively. As the current density returns to 0.1 A g^{-1} after 60 cycles, the capacity still maintains 653.5 mA h g^{-1} , which is even higher than the previous capacity at 0.1 A g^{-1} . Fig. 5d displays the excellent cycling performance of the MoS_2/C composite aerogel at the current density of 1 A g⁻¹. The capacity shows an upward trend upon cycling. The high capacity of 604.3 mA h g⁻¹ is achieved after 1000 cycles, which is higher than the initial several cycles, giving a capacity retention of nearly 100%. The excellent lithium storage performance may be ascribed to the structural advantages of the MoS₂/C composite aerogel such as hierarchical pores, interconnected conductive carbon networks, (002) plane-expanded MoS₂ embedded stably in the composite structure, which facilitate Li⁺ diffusion and intercalation, electron transport, and electrode pulverization.

Furthermore, the influence of the reactant ratio on the structure and lithium-ion performance of the end products

has been investigated. Fig. 6 shows the comparison of the obtained MoS₂ composite materials at different reactant ratios. Fig. 6a shows the SEM image of the product without sodium molybdate dihydrate and thioacetamide, recorded as MC-0. Fig. 6b, c and d show the SEM images of MoS₂/C composite materials prepared at different reactant ratios of $w(Na_2MoO_4 \cdot 2H_2O) : w(C_2H_5NS) : w(C_{12}H_{18}O_9) = 1 : 2 : 15,$ 1:2:5, 1:2:2.5, recorded as MC-1, MC-2 and MC-3, respectively, where MC-2 is the typical aerogel product that has been discussed above. By ICP analyses, the contents of MoS₂ formed in the composite aerogels increase with increasing amount of the reactants Na₂MoO₄·2H₂O and C₂H₅NS (Table S2[†]). It is found that the amount of reactant precursors of MoS₂ has a significant influence on the final structure of aerogels and the electrochemical performance. It seems that fewer MoS₂ reactants lead to a low cross-linking degree and an undeveloped pore structure (Fig. 6b), while more reactants lead to a higher degree of cross-linking with obvious pore structures (Fig. 6d). When too many reactants are added, the ion concentration is so high that the reaction for producing MoS₂ is out of control, which tends to form large MoS₂ aggregates (Fig. S5[†]). The agglomeration of MoS₂ may have adverse effects on the electrochemical performance. Fig. 6e displays the comparison of the cycle performance of MC-1, MC-2 and MC-3 as electrode materials in LIBs at a current density of 1 A g^{-1} . It is clear that MC-1 has good cycle performance, but its specific capacity is the lowest among the three possibly due to the fewest MoS₂ content with insufficient active sites for lithiation in the obtained MoS₂/C composite aerogel. It is also found that MC-3 has the highest initial specific capacity but poorer cycle

Fig. 6 SEM images of MC-0 (a), MC-1 (b), MC-2 (c) and MC-3 (d); (e) cycling performance of MC-1, MC-2 and MC-3 electrodes in lithium-ion batteries at a current density of 1 A g^{-1} ; (f) galvanostatic charging–discharging curves of MC-1, MC-2 and MC-3 electrodes in supercapacitors at a current density of 1 A g^{-1} .

stability than the other two, which may be owing to the high content of MoS_2 with serious aggregation in the composite aerogel. Fig. 6f displays the galvanostatic charging–discharging curves of MC-1, MC-2 and MC-3 electrodes in supercapacitors at a current density of 1 A g⁻¹. It is quite evident that MC-2 has the highest capacitance by comparing the integral current areas of the discharge curves. To sum up, MC-2 shows the best comprehensive performance.

4. Conclusion

In summary, a hierarchically porous MoS₂/C composite aerogel is successfully designed and synthesized by simple one-pot mass preparation. The strategy involving the in situ formation of MoS₂ nanosheets on agarose molecular chains followed by the gelation of agarose monomers allows the largescale generation of the composite hydrogel and composite aerogel upon carbonization. This composite aerogel can be used as an excellent electrode material in lithium-ion batteries and supercapacitors, even though the mechanisms are totally different in these two devices. This MoS₂/C composite aerogel shows high capacitance/capacity, excellent rate capability and long cyclability in both devices, which may be attributed to the unique structure of the MoS₂/C composite aerogel, such as hierarchical pores, (002) plane-expanded MoS₂ and interconnected carbon networks embedded uniformly with MoS₂ nanosheets. This work may provide a general and simple

approach for the mass preparation of composite aerogel materials that are promising for practical applications in both lithium-ion batteries and supercapacitors.

Acknowledgements

This work was financially supported by the National Natural Science Foundation (21273161), the Natural Science Foundation of Shanghai (17ZR1447800), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the Hundred Youth Talent Plan of Tongji University, and the Fundamental Research Funds for the Central Universities.

References

- 1 M. Armand and J. M. Tarascon, Nature, 2008, 451, 652-657.
- 2 P. Simon and Y. Gogotsi, Nat. Mater., 2008, 7, 845-854.
- 3 X. Huang, Z. Zeng and H. Zhang, *Chem. Soc. Rev.*, 2013, **42**, 1934–1946.
- 4 T. Stephenson, Z. Li, B. Olsen and D. Mitlin, *Energy Environ. Sci.*, 2014, 7, 209–231.
- 5 M. Acerce, D. Voiry and M. Chhowalla, *Nat. Nanotechnol.*, 2015, **10**, 313–318.
- 6 L. Rapoport, N. Fleischer and R. Tenne, *J. Mater. Chem.*, 2005, **15**, 1782–1788.

Published on 28 June 2017. Downloaded by TONGJI UNIVERSITY LIBRARY on 10/07/2017 10:42:07.

- 7 J. Xiao, X. J. Wang, X. Q. Yang, S. D. Xun, G. Liu, P. K. Koech, J. Liu and J. P. Lemmon, *Adv. Funct. Mater.*, 2011, 21, 2840–2846.
- 8 H. Y. Wang, H. Jiang, Y. J. Hu, N. Li, X. J. Zhao and C. Z. Li, *J. Mater. Chem. A*, 2017, 5, 5383–5389.
- 9 H. M. Ji, C. Liu, T. Wang, J. Chen, Z. N. Mao, J. Zhao,
 W. H. Hou and G. Yang, *Small*, 2015, 11, 6480–6490.
- 10 C. B. Ma, X. Y. Qi, B. Chen, S. Y. Bao, Z. Y. Yin, X. J. Wu, Z. M. Luo, J. Wei, H. L. Zhang and H. Zhang, *Nanoscale*, 2014, 6, 5624–5629.
- 11 K. Chang and W. X. Chen, ACS Nano, 2011, 5, 4720-4728.
- 12 J. Wang, J. L. Liu, D. L. Cha, J. X. Yan, J. Y. Lin and Z. X. Shen, *Adv. Mater.*, 2014, **26**, 7162–7169.
- 13 Y. M. Shi, Y. Wang, J. I. Wong, A. Y. S. Tan, C. L. Hsu, L. J. Li, Y. C. Lu and H. Y. Yang, *Sci. Rep.*, 2013, 3, 2169.
- 14 J. Z. Wang, L. Lu, M. Lotya, J. N. Coleman, S. L. Chou, H. K. Liu, A. I. Minett and J. Chen, *Adv. Energy Mater.*, 2013, 3, 798–805.
- 15 Y. Wang, G. Z. Xing, Z. J. Han, Y. M. Shi, J. I. Wong, Z. X. Huang, K. Ostrikovcde and H. Y. Yang, *Nanoscale*, 2014, **6**, 8884–8890.
- 16 J. M. Jeong, K. G. Lee, S. J. Chang, J. W. Kim, Y. K. Han, S. J. Lee and B. G. Choi, *Nanoscale*, 2015, 7, 324–329.
- X. H. Wang, J. J. Ding, S. W. Yao, X. X. Wu, Q. Q. Feng,
 Z. H. Wang and B. Y. Geng, *J. Mater. Chem. A*, 2014, 2, 15958–15963.
- 18 Z. N. Deng, H. Jiang, Y. J. Hu, Y. Liu, L. Zhang, H. L. Liu and C. Z. Li, *Adv. Mater.*, 2017, 29, 1603020.
- 19 H. Jiang, D. Y. Ren, H. F. Wang, Y. J. Hu, S. J. Guo, H. Y. Yuan, P. J. Hu, L. Zhang and C. Z. Li, *Adv. Mater.*, 2015, 27, 3687–3695.
- 20 J. Wang, D. L. Chao, J. L. Liu, L. L. Li, L. F. Lai, J. Y. Lin and Z. X. Shena, *Nano Energy*, 2014, 7, 151–160.
- 21 Q. G. Wang, J. L. Mynar, M. Yoshida, E. J. Lee, M. Lee, K. Okuro, K. Kinbara and T. Aida, *Nature*, 2009, **463**, 339– 343.
- 22 S. Deville, E. Saiz, R. K. Nalla and A. P. Tomsia, *Science*, 2006, **311**, 515–518.
- 23 X. F. Wang, X. Shen, Z. X. Wang, R. C. Yu and L. Q. Chen, *ACS Nano*, 2014, **8**, 11394–11400.

- 24 Z. Hu, L. X. Wang, K. Zhang, J. B. Wang, F. Y. Cheng, Z. L. Tao and J. Chen, *Angew. Chem.*, *Int. Ed.*, 2014, 53, 12794–12798.
- 25 A. Zak, Y. Feldman, V. Lyakhovitskaya, G. Leitus, R. P. Biro, E. Wachtel, H. Cohen, S. Reich and R. Tenne, *J. Am. Chem. Soc.*, 2002, **124**, 4747–4758.
- 26 M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. S. Li and S. Jin, *J. Am. Chem. Soc.*, 2013, 135, 10274–10277.
- 27 X. F. Wang, Z. R. X. Guan, Y. J. Li, Z. X. Wang and L. Q. Chen, *Nanoscale*, 2015, 7, 637–641.
- 28 Z. Wang, T. Chen, W. X. Chen, K. Chang, L. Ma, G. C. Huang, D. Y. Chen and J. Y. Lee, *J. Mater. Chem. A*, 2013, 1, 2202–2210.
- 29 L. Q. Mai, A. M. Khan, X. C. Tian, K. M. Hercule, Y. L. Zhao, X. Lin and X. Xu, *Nat. Commun.*, 2013, 4, 2923.
- 30 X. Li, C. F. Zhang, S. Xin, Z. C. Yang, Y. T. Li, D. W. Zhang and P. Yao, ACS Appl. Mater. Interfaces, 2016, 8, 21373– 21380.
- 31 T. H. Suna, Z. P. Li, X. H. Liu, L. M. Ma, J. Q. Wang and S. R. Yang, *J. Power Sources*, 2016, 331, 180–188.
- 32 B. Q. Xie, Y. Chen, M. Y. Yu, T. Sun, L. H. Lu, T. Xie, Y. Zhang and Y. C. Wu, *Carbon*, 2016, **99**, 35–42.
- 33 Q. H. Weng, X. Wang, X. B. Wang, C. Zhang, X. F. Jiang,
 Y. Bando and D. Golberg, *J. Mater. Chem. A*, 2015, 3, 3097–3102.
- 34 L. J. Ren, G. N. Zhang, Z. Yan, L. P. Kang, H. Xu, F. Shi, Z. B. Lei and Z. H. Liu, ACS Appl. Mater. Interfaces, 2015, 7, 28294–28302.
- 35 S. Hu, W. Chen, J. Zhou, F. Yin, E. Uchaker, Q. F. Zhang and G. Z. Cao, *J. Mater. Chem. A*, 2014, 2, 7862–7872.
- 36 L. R. Hu, Y. M. Ren, H. X. Yang and Q. Xu, ACS Appl. Mater. Interfaces, 2014, 6, 14644–14652.
- 37 X. S. Zhou, L. J. Wan and Y. G. Guo, *Nanoscale*, 2012, 4, 5868–5871.
- 38 R. Elazari, G. Salitra, A. Garsuch, A. Panchenko and D. Aurbach, *Adv. Mater.*, 2011, 23, 5641–5644.
- 39 B. Zhang, X. Qin, G. R. Li and X. P. Gao, *Energy Environ. Sci.*, 2010, 3, 1531–1537.
- 40 C. B. Zhu, X. K. Mu, P. A. van Aken, Y. Yu and J. Maier, Angew. Chem., Int. Ed., 2014, 53, 2152–2156.